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Quantization of Fractal Systems: One-Particle 
Excitation States 
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We consider a self-similar chain of quantum harmonic oscillators as a model of 
quantum field theory on a fractal supporter. In terms of this model a mass 
generation mechanism for one-particle excitations is proposed. 

1. I N T R O D U C T I O N  

The common way in which the concept of energy is introduced into 
quantum mechanics is twofold. On the one hand, the energy of a particle (or 
a system) is a quantity conserved due to the invariance with respect to time 
translations (i.e., the eigenvalue of the O/Ot generator). On the other hand we 
have to use the mechanical analogy E = p2/(2m) with p substituted by the 
operator/~ = - i h  OlOx. Having done this, we can construct a field-theoretic 
model with the usual renormalization problems, etc. 

In the present paper we propose an alternative approach which in our 
opinion would allow us to introduce the concept of  energy in a more consistent 
way from a cosmological standpoint. Our approach is based on two ideas. 

First, we consider self-similarity (or roughly, conformal invariance) as 
a fundamental property of the whole of  nature, rather than a purely theoretical 
tool which appears in quantum field theory to cut the divergencies off. 

Second, in terms of  our model the (dynamical) mass of the particle itself 
comes from the amplitude for this particle to flip from one cell of space- 
time to the neighboring one. 
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2. THE D I M E N S I O N  A N D  F R A C T A L  S T R U C T U R E  OF 
S P A C E - T I M E  

There are two different ways to define the physical space-time dimension. 
First, the dimension of space-time can be defined as the number of  coordinates 
(numbers) which we need to define the state of  a system. The second, and 
this is more convenient for mathematicians than physicists, is the Hausdorf f -  
Besicovitch dimension. Here we recall the latter definition (Mandelbrot, 1988; 
Feder, 1988). 

Let us consider a set ~- embedded into a D-dimensional Euclidean space 
fit~ then we can construct a covering of the set ~- with d-dimensional balls 
of  radius 8 and define a measure function 

Md =- ~ "l(d)~ a = 2t(d)N(~)~ a (1) 

where ~(d) = F(�89 + d/2) is a geometrical factor. 
The set 0- is said to have Hausdorff-Besicovi tch dimension D if 

0 d > D  
lim Ma = d < D 
~ 0  

This definition is also referred to as a "mass dimension" since if we 
calculate a mass contained in a spherical volume of radius r we in fact 
perform a S-covering of  this volume. I f  we suppose the mass distribution to 
have dimension D, then the mass interior to a spherical volume should be 
proportional to r ~ (say, M = 4 3 -y~rr for D = 3). Experimentally observed 
mass distributions are usually far from that. On large scales, up to 50 Mpc, 
we have M(r)  ~ r H (Sancisi and van Albada, 1987). For smaller ones 
comparable to the size of  nuclei we formally can estimate the dimension by 
studying the dependence of the radius of  the nuclei on their masses. For 
example, using the data on a-particle elastic scattering on nuclei (Yushkov, 
1993), for atomic numbers A > 30 we obtain approximately 

A --/.1.57 (2) 

which is also far from the D = 3 case. 3 
I f  we go down to subnuclear and even to the Planck scale, we cannot 

afford ourselves the luxury of experimental study, say, for E --  1015 GeV, 
but theoretical investigations (Crane and Smolin, 1986; Altaisky et aL,  n.d.) 
lead to the conclusion that the physical space-time at the scales of  quantum 
gravity should have a dimension less than that of  the embedding space, at 

3 The well-known relation r = roA-1/3 is suitable more or less strictly only for the mirror nuclei 
with A < 40. 
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least for the sake of anomaly cancellation. In addition, if we endow the space 
with fractal geometry, the behavior of Feynman loop integrals turns out to 
be much softer than in D = 4 Minkowski space. 

Thus, the only region where physical space-time has been strongly 
proven to have 1 + 3 dimensions is that of terrestrial scales (10-6-10 9 cm). 

In the present paper we discuss a possible mechanism for the origin of 
the (dynamical) particle mass due to a self-similar structure of space-time. 
Let us suppose that the universe (we shall denote it �9 in our one-dimensional 
toy model) is closed and has a finite mass M0 equal to the mass of the initial 
singularity. A topology of self-similar sets can be introduced on ~ in a way 
shown in Altaisky et aL (n.d.) if we split it into two hemispheres, say A 
and B, and then perform the partitioning of both sets into fractal gaskets 
(see Appendix). 

If we require total symmetry under A ~ B, then the equality 

Mo c2 
EA = E8 - (3) 

2 

must hold. This equation can be regarded as the definition of the energy, 
with c 2 being a formal proportionality coefficient (no relativistic concepts 
have been used in our model). According to our model the sizes of the sets 
A and B also should be equal: 

L0 
l ~ = l  ~  (4) 

2 

Implying the color reverse procedure described in the Appendix, in the ith 
generation we obtain 

li = Io 3-i ,  mi = mo 3- i  (5) 

Up to this point we have dealt with pure geometry without any dynamical 
degrees of freedom. Now we introduce the physical excitation states of the 
model. Let us use a formal mechanical analogy and suppose that in the course 
of the sequential partitioning process energy conservation is provided as 
follows. Each central part of the black domain (see Fig. 1) of the (i - 1)th 
generation is divided into three equal parts with the energy of the central 
part in the form of the energy of a contracted spring: 

ki 
mi_l c2 = 2mi c2 + -~ (A/i) 2 (6) 

with A l  i = l i ,  and hence 

ki 2moc 2 
mi c2 = -~ 12, k i = ko 3i, where k0 - 12 (7) 
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!i 

Fig. 1. Since the sphere S", as a boundary of  the (n + 1)-dimensional simplex, can be partitioned 
into a set o f  n + 1 simplices (the idea that this partitioning could be of  physical interest comes 
from Regge), it can also be covered with fractal gaskets, since each of  which is a subset of  a 
certain simplex. 

On the ith level we have a periodic chain which consists of 3; oscillators 
of typical size b; = 21i. An arbitrary point of ~ has, therefore, a nested 
system of vicinities belonging to the system of subspaces 

c v~+~ c v~+2 c . . .  (8) 

where V0 ~ {A, B} is the most coarse-grained one. This is just like the case 
of a certain point of physical space-time found inside a certain quark, inside 
a certain nucleon, inside a particular nucleus, atom, galaxy, and so on. If  the 
scale invariance is broken at a certain scale, we need a finite number of 
numbers to describe the location of the point, or an infinite number otherwise. 
The particular level i at which we study the physics is of our free choice; 
the whole system U; V~ = ~ is the property of the universe. 

3. THE DYNAMICAL ORIGIN OF MASS IN A SELF-SIMILAR 
PERIODIC CHAIN 

Using the Hamiltonian 

3 i +2 (+k  --  + k + l )  2 

Hi : mi k~= l -2 -4- ki 2 (9) 
= rood 3 i 2 

of the ith-level chain, 4 we suppose for the sake of simplicity that each oscillator 
can be in two states only, namely 10), with energy already incorporated into 

aWe use k to denote a particular cell of  the chain (oscillator) and i to denote the generation; 
the latter index is omitted if the case is clear enough. 
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the vacuum energy of the whole system, and I 1), the one-particle excitation 
state. We also suppose that there is a nonzero probability for transition of 
the excitation from one cell to the neighboring one, 

h i =  ( k l k +  1)i 

Let t~(t) be the wave function of the excitation; then the probability 
amplitude to find it in a particular kth cell of a chain is 

G(t)  = (klq,(t)) 

The evolution equation for Ck is 

ih dCk(t)  _ ~ nk tc t ( t )  (1 O) 
dt  t 

Since we allow neighboring transitions only, we have two equal nonzero 
amplitudes, 

ki 
A = -~ (kl(d~ k - ~bk+l)21k + 1) (11) 

which determine the transition probability. The stationary state energy is 
equal to 

Eo = ( k l H I k )  = ho~i (12) 

since we incorporate the zero mode into the vacuum energy 

Explicitly substituting 

hto i ki( A li) 2 

into (11), we get 

2 2 

h a + a *  
t~g . ) -  a~i), where Q - 

mito  i x/ Z 

(13) 

c h  
A(o = x//2 To  ki  3i (14) 

Bearing in mind the continuous limit of the chain (i ---> ~, b ---> 0), we rewrite 
the evolution equation in the form (Feynman et  al., 1965; Sidharth, 1994) 

aC(x~, t) 
ih - -  - EoC(xk,  t) - AC(xk  + b, t) - A C ( x k  - b, t) (1.'5) 

Ot 
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where xk stands for the number of the particular cell. In the continuous limit 
of (15) we obtain the Schr6dinger-type equation 

ih  OC(x) _ h2 02C(x) (16) 
Ot 2mef f O x  2 

where 

h 2 

meff - 2Ab2 

is the effective mass of the excitation [see Feynman et  al. (1965) for details]. 
For the ith generation of our model (bi = 21 i )  the effective mass of 

excitation turns out to be 

h3 i 
m~e~ - (17) 

8 ( 2 c l o h . i )  tie 

It is worth noting that equation (13), which has been used to set E0 = hoJi, 
is not the unique solution of the problem. In principle, there is the possibility 
of choosing 

h(i)~ _ k i ( ~ l i )  2 
2 2 (18) 

with 

h( i )  = . v / 2 m o l o c 3  - 2i (19)  

treated as a scale-dependent quantity. In this case 

m~i~ - mo3 - i  
8X i (20) 

In terms of our one-dimensional model we cannot choose in a credible 
way which of the possibilities is better. We even cannot strictly identify our 
h with the physical Planck constant. We can only mention that i f  hphys is a 
constant determining the breaking of scale invariance at the Ibr~, level of the 
subdivision process, then 

h = 21/2moloc3 - 2 t b ~  (21) 

Thus, if we fix the scale at which the symmetry breaking takes place, then 
h and c turn out to be no longer independent. 

4. CONCLUSION 

In conclusion we mention that the relation between scale invariance and 
the zero-mode (or vacuum) energy goes far beyond our simple model. 
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If we accept the hypothesis that scale invariance is a fundamental prop- 
erty of the whole universe, then the first thing to do is to use the representation 
of the scale transformation group to construct quantum field theory models. 
Doing so, we should write the state vectors in Hilbert space in the form 

If} = ~Cg Ig; y) dlx(y) {g; ylf)  (22) 

The difference from the simple case of Fourier decomposition is that in the 
case of an arbitrary group G we need to choose a certain vector g ~ H of 
our Hilbert space such that the normalization constant 

= Ilgll-2 fc d~(y) I (g ,  U(y)g)l 2 < m (23) Cg 

is finite. Here y = {Yi} are coordinates on G, Ig; y) ~ U(y)g is a cyclic 
representation of G, and dl~(y) is a left-invariant measure on G. In the one- 
dimensional case, which is sufficiently instructive, we can locally perform 
the decomposition with respect to the coherent states representation of the 
affine group (Daubechies et al., 1986): 

da db 
G: x - - + a x +  b, d l * -  a2 (24) 

__ n ,'rr-1/___.~4 e x2/2 d n 
gn(x) = ( 1 )  2"n! a ~  e-x2 (25) 

(x[ f} = ~ g (g; a, b l f )  daa adb (26) 

But, alas, in contrast to common quantum mechanics, the ground state g0(x) 
does not fit the admissibility condition (23), and that is the source of the 
whole problem (Altaisky, 1994). 

APPENDIX 
Fractal Gaskets and Sphere Covering 

Let us recall the construction procedure of the Sierpinski hypergasket 
(see e.g., Eyink, 1989a,b). 

Partitioning the unit d-simplex in R a into (d + 2) subsimplices of edge 
length 1/2, one (a) removes the open central subsimplex, and (b) repeats the 
operation with the (d + 1) closed subsimplices. 

Sierpinski gaskets obtained in this way can be used for triangulation of 
an Sn-sphere. Their self-similarity is very relevant to RG applications. Their 
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shortcomings are also evident. They are not invariant under translations, even 
inside a single gasket, and they are not dense in the embedding space. 

Let us modify the gasket-generating procedure. To clarify the consider- 
ation, let us imagine a unit simplex of black color. In the first step of the 
recursive procedure we remove the central open part of it; the central subsim- 
plex becomes white, and then--here is the difference--we repeat the proce- 
dure with all (d + 2) subsimplices. The generalization to white pieces seems 
evident: the central part of each simplex reverses its color. 

Since the numbers of black and white subsimplices at the (k + 1) stage 
of the recursive procedure are given by 

n ~  l = (d + 1)n~v + n~ (A 1) 

n[ +l = (d + 1)n~ + n~w 

for asymptotically large k we obtain 

1 
nk ~ ~ (d + 2) ~ 

simplices of each color of ~ = 2 -~ edge size. The fractal dimension of the 
constructed set is 

D - log(d + 2) (A2) 
log 2 

rather than 

for the Sierpinski gasket. 

D - log(d + 1) (A3) 
log 2 
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